3.7.8 \(\int \frac {\sqrt {f+g x}}{(d+e x)^{3/2} (a+c x^2)} \, dx\) [608]

Optimal. Leaf size=351 \[ -\frac {2 e \sqrt {f+g x}}{\left (c d^2+a e^2\right ) \sqrt {d+e x}}+\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \left (c d^2+a e^2\right ) \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d+\sqrt {-a} e} \left (c d^2+a e^2\right ) \sqrt {\sqrt {c} f+\sqrt {-a} g}} \]

[Out]

-2*e*(g*x+f)^(1/2)/(a*e^2+c*d^2)/(e*x+d)^(1/2)+arctanh((e*x+d)^(1/2)*(-g*(-a)^(1/2)+f*c^(1/2))^(1/2)/(g*x+f)^(
1/2)/(-e*(-a)^(1/2)+d*c^(1/2))^(1/2))*(c*d*f+a*e*g+(-d*g+e*f)*(-a)^(1/2)*c^(1/2))/(a*e^2+c*d^2)/(-a)^(1/2)/(-e
*(-a)^(1/2)+d*c^(1/2))^(1/2)/(-g*(-a)^(1/2)+f*c^(1/2))^(1/2)-arctanh((e*x+d)^(1/2)*(g*(-a)^(1/2)+f*c^(1/2))^(1
/2)/(g*x+f)^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))^(1/2))*(c*d*f+a*e*g-(-d*g+e*f)*(-a)^(1/2)*c^(1/2))/(a*e^2+c*d^2)/(-
a)^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))^(1/2)/(g*(-a)^(1/2)+f*c^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 1.36, antiderivative size = 351, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {922, 37, 6857, 95, 214} \begin {gather*} -\frac {2 e \sqrt {f+g x}}{\sqrt {d+e x} \left (a e^2+c d^2\right )}+\frac {\left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \left (a e^2+c d^2\right ) \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \sqrt {\sqrt {-a} e+\sqrt {c} d} \left (a e^2+c d^2\right ) \sqrt {\sqrt {-a} g+\sqrt {c} f}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[f + g*x]/((d + e*x)^(3/2)*(a + c*x^2)),x]

[Out]

(-2*e*Sqrt[f + g*x])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) + ((c*d*f + a*e*g + Sqrt[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh
[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[Sq
rt[c]*d - Sqrt[-a]*e]*(c*d^2 + a*e^2)*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]) - ((c*d*f + a*e*g - Sqrt[-a]*Sqrt[c]*(e*f
- d*g))*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/(S
qrt[-a]*Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*(c*d^2 + a*e^2)*Sqrt[Sqrt[c]*f + Sqrt[-a]*g])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 922

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(-g)*((e*f
- d*g)/(c*f^2 + a*g^2)), Int[(d + e*x)^(m - 1)*(f + g*x)^n, x], x] + Dist[1/(c*f^2 + a*g^2), Int[Simp[c*d*f +
a*e*g + c*(e*f - d*g)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n + 1)/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f,
 g}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[m, 0] && LtQ[n, -1]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {f+g x}}{(d+e x)^{3/2} \left (a+c x^2\right )} \, dx &=\frac {\int \frac {c d f+a e g-c (e f-d g) x}{\sqrt {d+e x} \sqrt {f+g x} \left (a+c x^2\right )} \, dx}{c d^2+a e^2}+\frac {(e (e f-d g)) \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x}} \, dx}{c d^2+a e^2}\\ &=-\frac {2 e \sqrt {f+g x}}{\left (c d^2+a e^2\right ) \sqrt {d+e x}}+\frac {\int \left (\frac {a \sqrt {c} (e f-d g)+\sqrt {-a} (c d f+a e g)}{2 a \left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}}+\frac {-a \sqrt {c} (e f-d g)+\sqrt {-a} (c d f+a e g)}{2 a \left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}}\right ) \, dx}{c d^2+a e^2}\\ &=-\frac {2 e \sqrt {f+g x}}{\left (c d^2+a e^2\right ) \sqrt {d+e x}}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \int \frac {1}{\left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c d^2+a e^2\right )}-\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \int \frac {1}{\left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c d^2+a e^2\right )}\\ &=-\frac {2 e \sqrt {f+g x}}{\left (c d^2+a e^2\right ) \sqrt {d+e x}}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c} d+\sqrt {-a} e-\left (\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \left (c d^2+a e^2\right )}-\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \text {Subst}\left (\int \frac {1}{-\sqrt {c} d+\sqrt {-a} e-\left (-\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \left (c d^2+a e^2\right )}\\ &=-\frac {2 e \sqrt {f+g x}}{\left (c d^2+a e^2\right ) \sqrt {d+e x}}+\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \left (c d^2+a e^2\right ) \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d+\sqrt {-a} e} \left (c d^2+a e^2\right ) \sqrt {\sqrt {c} f+\sqrt {-a} g}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.23, size = 361, normalized size = 1.03 \begin {gather*} -\frac {2 e \sqrt {f+g x}}{\left (c d^2+a e^2\right ) \sqrt {d+e x}}-\frac {i \sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )} \tan ^{-1}\left (\frac {\sqrt {c d^2+a e^2} \sqrt {f+g x}}{\sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )} \sqrt {d+e x}}\right )}{\sqrt {a} \left (\sqrt {c} d-i \sqrt {a} e\right ) \sqrt {c d^2+a e^2}}+\frac {i \sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )} \tan ^{-1}\left (\frac {\sqrt {c d^2+a e^2} \sqrt {f+g x}}{\sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )} \sqrt {d+e x}}\right )}{\sqrt {a} \left (\sqrt {c} d+i \sqrt {a} e\right ) \sqrt {c d^2+a e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[f + g*x]/((d + e*x)^(3/2)*(a + c*x^2)),x]

[Out]

(-2*e*Sqrt[f + g*x])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) - (I*Sqrt[-((Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt
[a]*g))]*ArcTan[(Sqrt[c*d^2 + a*e^2]*Sqrt[f + g*x])/(Sqrt[-((Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g
))]*Sqrt[d + e*x])])/(Sqrt[a]*(Sqrt[c]*d - I*Sqrt[a]*e)*Sqrt[c*d^2 + a*e^2]) + (I*Sqrt[-((Sqrt[c]*d - I*Sqrt[a
]*e)*(Sqrt[c]*f + I*Sqrt[a]*g))]*ArcTan[(Sqrt[c*d^2 + a*e^2]*Sqrt[f + g*x])/(Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*e)*
(Sqrt[c]*f + I*Sqrt[a]*g))]*Sqrt[d + e*x])])/(Sqrt[a]*(Sqrt[c]*d + I*Sqrt[a]*e)*Sqrt[c*d^2 + a*e^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(5382\) vs. \(2(279)=558\).
time = 0.10, size = 5383, normalized size = 15.34

method result size
default \(\text {Expression too large to display}\) \(5383\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(g*x + f)/((c*x^2 + a)*(x*e + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 5816 vs. \(2 (279) = 558\).
time = 30.94, size = 5816, normalized size = 16.57 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x, algorithm="fricas")

[Out]

-1/4*((c*d^3 + a*d*e^2 + (c*d^2*e + a*e^3)*x)*sqrt(-((c^2*d^3 - 3*a*c*d*e^2)*f + (3*a*c*d^2*e - a^2*e^3)*g + (
a*c^3*d^6 + 3*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4 + a^4*e^6)*sqrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6
)*f^2 - 2*(3*c^3*d^5*e - 10*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*f*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)
*g^2)/(a*c^6*d^12 + 6*a^2*c^5*d^10*e^2 + 15*a^3*c^4*d^8*e^4 + 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*
c*d^2*e^10 + a^7*e^12)))/(a*c^3*d^6 + 3*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4 + a^4*e^6))*log(((3*c*d^2*e^2 - a*e^
4)*f^2 + 2*(c*d^3*e + a*d*e^3)*f*g - (c*d^4 - 3*a*d^2*e^2)*g^2 + 2*((3*c^2*d^4*e - 4*a*c*d^2*e^3 + a^2*e^5)*f
- (c^2*d^5 - 4*a*c*d^3*e^2 + 3*a^2*d*e^4)*g - 2*(a*c^3*d^7*e + 3*a^2*c^2*d^5*e^3 + 3*a^3*c*d^3*e^5 + a^4*d*e^7
)*sqrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6)*f^2 - 2*(3*c^3*d^5*e - 10*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5
)*f*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)*g^2)/(a*c^6*d^12 + 6*a^2*c^5*d^10*e^2 + 15*a^3*c^4*d^8*e
^4 + 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*c*d^2*e^10 + a^7*e^12)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt
(-((c^2*d^3 - 3*a*c*d*e^2)*f + (3*a*c*d^2*e - a^2*e^3)*g + (a*c^3*d^6 + 3*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4 +
a^4*e^6)*sqrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6)*f^2 - 2*(3*c^3*d^5*e - 10*a*c^2*d^3*e^3 + 3*a^2*
c*d*e^5)*f*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)*g^2)/(a*c^6*d^12 + 6*a^2*c^5*d^10*e^2 + 15*a^3*c^
4*d^8*e^4 + 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*c*d^2*e^10 + a^7*e^12)))/(a*c^3*d^6 + 3*a^2*c^2*d^
4*e^2 + 3*a^3*c*d^2*e^4 + a^4*e^6)) + 2*((3*c*d^2*e^2 - a*e^4)*f*g - (c*d^3*e - 3*a*d*e^3)*g^2)*x + (2*(c^3*d^
7 + 3*a*c^2*d^5*e^2 + 3*a^2*c*d^3*e^4 + a^3*d*e^6)*f + ((c^3*d^6*e + 3*a*c^2*d^4*e^3 + 3*a^2*c*d^2*e^5 + a^3*e
^7)*f + (c^3*d^7 + 3*a*c^2*d^5*e^2 + 3*a^2*c*d^3*e^4 + a^3*d*e^6)*g)*x)*sqrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^
4 + a^2*c*e^6)*f^2 - 2*(3*c^3*d^5*e - 10*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*f*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a
^2*c*d^2*e^4)*g^2)/(a*c^6*d^12 + 6*a^2*c^5*d^10*e^2 + 15*a^3*c^4*d^8*e^4 + 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4
*e^8 + 6*a^6*c*d^2*e^10 + a^7*e^12)))/x) - (c*d^3 + a*d*e^2 + (c*d^2*e + a*e^3)*x)*sqrt(-((c^2*d^3 - 3*a*c*d*e
^2)*f + (3*a*c*d^2*e - a^2*e^3)*g + (a*c^3*d^6 + 3*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4 + a^4*e^6)*sqrt(-((9*c^3*
d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6)*f^2 - 2*(3*c^3*d^5*e - 10*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*f*g + (c^3*d^6
 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)*g^2)/(a*c^6*d^12 + 6*a^2*c^5*d^10*e^2 + 15*a^3*c^4*d^8*e^4 + 20*a^4*c^3*
d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*c*d^2*e^10 + a^7*e^12)))/(a*c^3*d^6 + 3*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4
 + a^4*e^6))*log(((3*c*d^2*e^2 - a*e^4)*f^2 + 2*(c*d^3*e + a*d*e^3)*f*g - (c*d^4 - 3*a*d^2*e^2)*g^2 - 2*((3*c^
2*d^4*e - 4*a*c*d^2*e^3 + a^2*e^5)*f - (c^2*d^5 - 4*a*c*d^3*e^2 + 3*a^2*d*e^4)*g - 2*(a*c^3*d^7*e + 3*a^2*c^2*
d^5*e^3 + 3*a^3*c*d^3*e^5 + a^4*d*e^7)*sqrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6)*f^2 - 2*(3*c^3*d^5
*e - 10*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*f*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)*g^2)/(a*c^6*d^12 +
6*a^2*c^5*d^10*e^2 + 15*a^3*c^4*d^8*e^4 + 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*c*d^2*e^10 + a^7*e^1
2)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-((c^2*d^3 - 3*a*c*d*e^2)*f + (3*a*c*d^2*e - a^2*e^3)*g + (a*c^3*d^6 + 3
*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4 + a^4*e^6)*sqrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6)*f^2 - 2*(3*
c^3*d^5*e - 10*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*f*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)*g^2)/(a*c^6*
d^12 + 6*a^2*c^5*d^10*e^2 + 15*a^3*c^4*d^8*e^4 + 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*c*d^2*e^10 +
a^7*e^12)))/(a*c^3*d^6 + 3*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4 + a^4*e^6)) + 2*((3*c*d^2*e^2 - a*e^4)*f*g - (c*d
^3*e - 3*a*d*e^3)*g^2)*x + (2*(c^3*d^7 + 3*a*c^2*d^5*e^2 + 3*a^2*c*d^3*e^4 + a^3*d*e^6)*f + ((c^3*d^6*e + 3*a*
c^2*d^4*e^3 + 3*a^2*c*d^2*e^5 + a^3*e^7)*f + (c^3*d^7 + 3*a*c^2*d^5*e^2 + 3*a^2*c*d^3*e^4 + a^3*d*e^6)*g)*x)*s
qrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6)*f^2 - 2*(3*c^3*d^5*e - 10*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*f
*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)*g^2)/(a*c^6*d^12 + 6*a^2*c^5*d^10*e^2 + 15*a^3*c^4*d^8*e^4
+ 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*c*d^2*e^10 + a^7*e^12)))/x) + (c*d^3 + a*d*e^2 + (c*d^2*e +
a*e^3)*x)*sqrt(-((c^2*d^3 - 3*a*c*d*e^2)*f + (3*a*c*d^2*e - a^2*e^3)*g - (a*c^3*d^6 + 3*a^2*c^2*d^4*e^2 + 3*a^
3*c*d^2*e^4 + a^4*e^6)*sqrt(-((9*c^3*d^4*e^2 - 6*a*c^2*d^2*e^4 + a^2*c*e^6)*f^2 - 2*(3*c^3*d^5*e - 10*a*c^2*d^
3*e^3 + 3*a^2*c*d*e^5)*f*g + (c^3*d^6 - 6*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4)*g^2)/(a*c^6*d^12 + 6*a^2*c^5*d^10*e
^2 + 15*a^3*c^4*d^8*e^4 + 20*a^4*c^3*d^6*e^6 + 15*a^5*c^2*d^4*e^8 + 6*a^6*c*d^2*e^10 + a^7*e^12)))/(a*c^3*d^6
+ 3*a^2*c^2*d^4*e^2 + 3*a^3*c*d^2*e^4 + a^4*e^6))*log(((3*c*d^2*e^2 - a*e^4)*f^2 + 2*(c*d^3*e + a*d*e^3)*f*g -
 (c*d^4 - 3*a*d^2*e^2)*g^2 + 2*((3*c^2*d^4*e - 4*a*c*d^2*e^3 + a^2*e^5)*f - (c^2*d^5 - 4*a*c*d^3*e^2 + 3*a^2*d
*e^4)*g + 2*(a*c^3*d^7*e + 3*a^2*c^2*d^5*e^3 + ...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**(1/2)/(e*x+d)**(3/2)/(c*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {f+g\,x}}{\left (c\,x^2+a\right )\,{\left (d+e\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f + g*x)^(1/2)/((a + c*x^2)*(d + e*x)^(3/2)),x)

[Out]

int((f + g*x)^(1/2)/((a + c*x^2)*(d + e*x)^(3/2)), x)

________________________________________________________________________________________